Ricci Curvature modulo Homotopy
نویسنده
چکیده
This article is a report summarizing recent progress in the geometry of negative Ricci and scalar curvature. It describes the range of general existence results of such metrics on manifolds of dimension ≥ 3. Moreover it explains flexibility and approximation theorems for these curvature conditions leading to unexpected effects. For instance, we find that “modulo homotopy” (in a specified sense) these curvatures do not have any of the typical geometric impacts. Résumé. Cet article est un résumé des progrès récents dans la géométrie des variétés riemanniennes à courbure de Ricci ou scalaire négative. Il décrit le domaine de validité des résultats généraux d’existence pour de telles métriques sur les variétés de dimension ≥ 3. De plus, il explique les théorèmes de flexibilité et d’approximation pour ces conditions de courbure, ce qui conduit à des résultats inattendus. Par exemple, nous montrons que “modulo homotopie” (dans un sens précis), ces conditions de courbure n’impliquent aucune des conditions géométriques usuelles. M.S.C. Subject Classification Index (1991) : 11F72, 11R39, 22E55. c © Séminaires & Congrès 1, SMF 1996
منابع مشابه
Positive Ricci Curvature
We discuss the Sasakian geometry of odd dimensional homotopy spheres. In particular, we give a completely new proof of the existence of metrics of positive Ricci curvature on exotic spheres that can be realized as the boundary of a parallelizable manifold. Furthermore, it is shown that on such homotopy spheres Σ the moduli space of Sasakian structures has infinitely many positive components det...
متن کاملCritical points of distance functions and applications to geometry
8. Introduction Critical points of distance functions Toponogov's theorem; first application:a Background on finiteness theorems Homotopy Finiteness Appendix. Some volume estimates Betti numbers and rank Appendix: The generalized Mayer-Vietoris estimate Rank, curvature and diameter Ricci curvature, volume and the Laplacian Appendix. The maximum principle Ricci curvature, diameter growth and fin...
متن کاملMetrics with Non-negative Ricci Curvature on Convex Three-manifolds
We prove that the space of smooth Riemannian metrics on the three-ball with non-negative Ricci curvature and strictly convex boundary is path-connected; and, moreover, that the associated moduli space (i.e., modulo orientation-preserving diffeomorphisms of the threeball) is contractible. As an application, using results of Maximo, Nunes, and Smith [MNS], we show the existence of properly embedd...
متن کاملOn the Moduli Space of Positive Ricci Curvature Metrics on Homotopy Spheres
We show that the moduli space of Ricci positive metrics on a certain family of homotopy spheres has infinitely many components.
متن کاملOn Randers metrics of reversible projective Ricci curvature
projective Ricci curvature. Then we characterize isotropic projective Ricci curvature of Randers metrics. we also show that Randers metrics are PRic-reversible if and only if they are PRic-quadratic../files/site1/files/0Abstract2.pdf
متن کامل